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In this supplemental material, we provide detailed expla-
nations of the preprocessing steps and score function used in
our rectilinear mesh reconstruction (Section 1), implemen-
tation details of transformer network and GCN (Section 2),
and the synthetic dataset generation process (Section 3). We
also present additional qualitative and quantitative results to
demonstrate the effectiveness of our method (Section 4).

1. Rectilinear Mesh Reconstruction Details

1.1. Preprocessing Step

We details the preprocessing mentioned in Sec. 3.2 of the
main paper, which computes the rotation matrix. A poly-
cuboid instance consists of a set of detected faces, where
each face is represented as a set of points with an inferred
face label. Each face label corresponds to one of six global
axes (e.g., ±x, ±y, ±z). We utilize this information to com-
pute the rotation matrix. We first fit a plane to each de-
tected face to obtain its normal vector. We then compute
the angular differences between the plane normals and the
corresponding global axes derived from the inferred face
labels. Finally, we determine the rotation matrix that mini-
mizes these angle differences using a least-square approach.

Using the optimized rotation matrix, we rotate the poly-
cuboid instance to be aligned with the global frame. Af-
ter completing the rectilinear mesh reconstruction process,
we transform the reconstructed polycuboid mesh back to its
original coordinate by applying the inverse of the rotation
matrix.

1.2. Score Function

In Sec. 3.2 of the main paper, to reconstruct a polycuboid
instance, we select a set of 3D boxes from a 3D non-uniform
grid using a heuristic score function. Each box b in the grid
is represented as a polygonal mesh of a cuboid parameter-
ized by its center and extents, and the score function for b is

defined as:

S(b) =
6∑

n=1

sgn(fn, Pn) · w(fn, Pn), (1)

where fn represents each face of the box b, and Pn is the
set of points from detected faces located within an 0.05m of
fn. The sign function sgn(fn, Pn) returns 1 if the cuboid
face label of fn matches the most frequent face label in Pn

and −1 otherwise. The weight factor w(fn, Pn) mitigates
the impacts of partially detected faces due to incomplete
scan data. It is defined as the ratio of the estimated surface
area of Pn to the area of fn. The area of Pn is computed
using the area of the 2D bounding box of projected Pn onto
the face fn. A box with a positive score is classified as
inside the polycuboid instance, whereas a negative score is
classified as outside.

2. Implementation Details
We use Transformer and Graph convolutional Network
(GCN) in our framework. This section provides implemen-
tation details of these networks with model architectures.

For the face labeling task, we adopt the model named
Stratified Transformer [1]. The model first encodes the in-
put point cloud using a hierarchical tokenization strategy,
where local features are extracted at multiple levels of gran-
ularity. Theses features are then processed by five trans-
former layers, where each layer refines the point features
based on attention mechanism. Once the point features are
fully embedded, point-wise classification and offset regres-
sion are performed using two separate heads, each com-
posed of a two-layer MLP.

For spatial relationship prediction, we adopt the GCN
model proposed by Wald et al. [3], which is designed to
learn structured scene graphs from 3D indoor scene data.
The model first encodes input data using two separate
PointNet encoders, one for node features and another for
edge features to transform the raw information into higher-
dimensional feature representation. The node and edge fea-
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(a) Random configuration (b) Contextual configuration

Figure 1. Two types of configurations of polycuboids are used
to generate our synthetic dataset. (a) Polycuboids are randomly
placed. (b) Polycuboids are positioned to replicate the object con-
figurations derived from the ScanNet dataset.

Figure 2. A simplified example of the data generation process.
Points are sampled from polycuboid and cuboid meshes, followed
by adding noise and holes.

tures are then fed into a GCN that consists of five graph
convolution layers and iteratively refines the node and edge
features through message passing. Node classification and
edge classification are finally performed using two separate
heads composed of three-layer MLP.

3. Synthetic Dataset Generation

We provide further details on the dataset generation process
described in Sec. 4.1 of the main paper, along with visual
examples.

Each scene is constructed using a combination of poly-
cuboid and cuboid meshes, following two configuration
types: 1) Random configuration: Scenes are generated by
randomly placing polycuboid and cuboid meshes with vary-
ing numbers, scales, and orientations while ensuring that
no meshes overlap (Fig. 1a). Each scene contains 5 to 20
meshes whose scales range from 0.4m to 2.4m. 2) Con-
textual configuration: To simulate more realistic configu-
rations, we utilize object bounding boxes from the ScanNet
dataset, which are parameterized by their center coordinates
and extents. In these scenes, existing bounding boxes are
randomly replaced by polycuboid meshes (Fig. 1b).

After composing the scenes, we sample points at 1cm
interval on each mesh face. To better simulate real-world
scanning conditions, we add Gaussian noise to the sampled
points and create holes by randomly removing 0 to 3 faces
from each mesh, along with their corresponding sampled
points (Fig. 2).

4. Additional Results
In this section, we present additional qualitative and quan-
titative results to further evaluate our method. In Fig. 3,
we illustrate examples of input point clouds alongside our
final results for ‘room0’ from the Replica dataset. Despite
the noisy input, scene components are plausibly represented
with polycuboids.

We also demonstrate two applications, scene editing and
virtual room tours, in Figs. 4 and 5, respectively. These
examples highlight the ease of manipulating scene com-
ponents and the seamless virtual exploration experience,
which would be valuable for interior design and AR/VR ap-
plications.

Further quantitative and qualitative evaluations are pro-
vided on the ScanNet and Replica datasets. Visual results
are shown in Figs. 6 and 7, with corresponding quantitative
results in Tables 1 and 2, respectively.
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Figure 3. Example of polycuboid abstraction on Replica dataset for ‘room0’. The two images on the left show the input point cloud and
our final result, while the two images on the right provide close-up views.

Figure 4. Editing examples of reconstructed polycuboids on Replica dataset for ‘office 0’. The first and third images show the original
arrangements of polycuboids representing the scene, while the second and fourth images show rearranged polycuboids, including an L-
shaped sofa and two chairs.

Room tour Scene editingPolycuboids with textures

Figure 5. Application examples on the dataset scanned with an iPhone. Our compact polycuboid representation of an indoor scene enables
practical applications, such as virtual room tour and scene editing. For scene editing, a grey sofa created by a designer is used to replace
the original scanned sofa.

Table 1. For four scenes from ScanNet dataset, we use Chamfer Distance (CD) to measure geometric discrepancy between input points and
points sampled from our output polycuboids. Average: average CD score for four examples. Average∗: average CD score for all validation
data of ScanNet.

0006 00 0035 00 0273 01 0276 00 Average Average∗

MBF[2] 0.078 0.046 0.069 0.065 0.065 0.066
Ours 0.047 0.034 0.034 0.087 0.050 0.040



Table 2. For nine scenes from Replica dataset, we use Chamfer Distance (CD) to measure geometric discrepancy between input points and
points sampled from our output polycuboids. We apply our framework to points categorized under ‘layout’ and ‘non-layout’, respectively.

type hotel 0 office 0 office 1 office 2 office 3 office 4 room 0 room 1 room 2 Average
MBF[2] non-layout 0.068 0.151 0.068 0.074 0.076 0.071 0.060 0.078 0.056 0.078
Ours non-layout 0.040 0.037 0.051 0.040 0.033 0.036 0.048 0.075 0.036 0.044
MBF[2] layout 0.078 0.062 0.049 0.036 0.043 0.027 0.037 0.049 0.036 0.047
Ours layout 0.131 0.090 0.073 0.042 0.116 0.045 0.064 0.082 0.084 0.081
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Figure 6. Qualitative comparison on four scenes from ScanNet dataset. From left to right, columns show the input point cloud, results from
MBF [2], results from our method with coarse and fine detail levels, and zoomed-in views of our fine level results. Our method faithfully
captures the underlying geometry, even when the inputs are very noisy and incomplete.
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Figure 7. Qualitative evaluations on five rooms from Replica dataset, showing the separate results for layout and objects. From left to
right, columns show the input point cloud for layout, results from MBF [2], results from our method, the input point cloud for objects,
results from MBF, results from our method with coarse and fine detail levels. The bottom two rows provide zoomed-in views of our results
constructed using polycuboids for both layout and objects.
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